Performance-based Analysis for Implementation of Systematic Rehabilitation of Concrete Hydraulic Structures

Yusof Ghanaat
QUEST Structures
3 Altarinda Road, Suite 203
Orinda, Ca 94563
yghanaat@QuestStructures.com

Presentation for

Seismic Evaluation & Rehabilitation of Hydraulic Infrastructure Workshop

Sponsored by

US Army Corps of Engineers Engineering Research and Development

14-16 November 2000 Sacramento, CA

Why Seismic Rehabilitation?

- Earthquake is a real threat
- Save lives
- Reduce the risk of catastrophic failure
- Minimize economic impact
- Minimize the cost of repair
- Minimize the risk of service interruption

Systematic Rehabilitation

Performance-based Analysis

- Reasonable Design/Evaluation Earthquake Motions
- Appropriate Method of Analysis
- Probable Load Combinations
- Material Properties and Damping consistent with existing conditions
- Structural models that account for existing conditions and method of construction
- Performance evaluation in terms of demand-capacity ratios, strength and displacement capacities

Performance-based Design

- Serviceability Performance
 Serviceable and operable immediately following an OBE event (elastic or/ nearly elastic)
- Damage Control Performance
 Limited nonlinear behavior can occur under MDE, if nonlinear displacement demands are low and load resistance is not diminished
- Collapse Prevention Performance
 Collapse of the structure should be prevented regardless of level of damage

Nonlinear Behavior and Modes of Failure of Arch Dams

- Contraction joints may open and close repeatedly during ground shaking
- Contraction joint opening releases arch tensile stresses and transfers forces to cantilevers
- The increase cantilever stresses may exceed tensile strength of lift lines causing horizontal cracks
- Potentially opened contraction joints and cracked lift lines may subdivide the monolithic arch into one or several partially free cantilever blocks

Nonlinear Behavior and Modes of Failure of Arch Dams

- Any failure of the arch dam more likely would involve sliding stability of partially free cantilever blocks
- For small and moderate joint openings, the partially free blocks may remain stable through interlocking (wedging) with adjacent block
- The extent of interlocking depends on the depth and type of shear keys
- The magnitude of compressive stresses, extent of joint opening or cracking, and amplitude of non-recoverable block movements will control the overall stability of the dam, rather than the magnitude of calculated tensile stresses

Dam-Foundation FE Model

Morrow Point Dam-Foundation Model

Dam:

Shell/Solid Elements

• Foundation:

Massless model:

- Accounts for flexibility only
- Fixed boundaries

Viscoelastic Half-space:

- Assumes homogenous rock and infinitely long canyon
- Accounts for inertia, damping and flexibility
- Treated as 2D boundary problem
- Leads to impedance matrix at the interface

Dam-Water Interaction Model

- Generalized Westergaard Added Mass
- FE solution of wave equation for incompressible water
- FE solution of wave equation for compressible water with absorptive boundaries

Earthquake ground Motion

Near-source Earthquake Records

Earthquake Records	Name	Scale
Pacoima Dam, downstream record 1971 San Fernando earthquake $M_{\rm w}$ 6.6, $R=2.8~{\rm km}$	Pacx	0.52
Spectrum-matched 1971 Pacoima Dam record	Pacb	1.00
Pacoima Dam, downstream record 1994 Northridge earthquake $M_{\rm w}$ 6.7, $R=8~{\rm km}$	Pacn	1.13
Newhall, West Pico Canyon Boulevard 1994 Northridge earthquake $M_{\rm w}$ 6.7, $R=7.1~{\rm km}$	U56	1.80
Coyote Lake Dam 1984 Morgan Hill earthquake M _w 6.2, R = 0.1 km	Cld	0.64
Gilroy Array No. 1 1989 Loma Prieta earthquake, $M_{\rm w}$ 6.9, R = 11 km	Gly	0.81

Input Acceleration Time Histories

Time Histories of Crest Displacement

Envelope of Maximum Stresses (Gilroy)

Concurrent Stresses at the Time of Maximum Arch Stress

Time History of maximum Arch Stresses

Damage Criteria for Linear Analysis (Acceptable Performance for Arch Dams)

2.0

Damage Criteria for Arch Dams (Acceptable Performance)

Nonlinear Behavior and Modes of Failure of Gravity Dams

- Formation, location, extent, and orientation of tensile cracking are sensitive to characteristics of the earthquake ground motion
- Cracking always initiates at the base of the dam
- Cracks at the top generally initiate from the D/S face and are horizontal or sloping downward
- A crack sloping down from the D/S is more stable against sliding than a crack with a upward slope
- Any failure would likely involve sliding along the cracked surfaces

Sub-structure FE Model of Gravity Dam

- Complete system is divided into 3 substructures - - dam, water, and foundation rock
- <u>Dam</u> is modeled using standard FE method
- Water is idealized as a continuum leading to frequency-dependent hydrodynamic forces
- Foundation region is idealized as continuum resulting in dynamic stiffness (impedance) matrix

Standard FE Model of Gravity Dam

- Complete system of dam, water, and foundation is idealized and analyzed as a single composite model
- <u>Dam</u> is modeled using standard FE method
- Water is represented by Westergaard added mass
- Foundation region is represented by a FE mesh accounting for flexibility only

Damage Criteria for Linear Analysis (Acceptable Performance for Gravity Dams)

- D/C<1, linear elastic response
- Damage Acceptable if
 - D/C <2
 - Duration below the curve
 - Overstressed region<15%
 of dam surface area
- Otherwise
 May require nonlinear analysis or retrofit

Modes of Failure of Freestanding Towers

- Different combinations and sequence of failures (a), (b), (c), and (d) are also possible
- Flexure is desired mode of nonlinear behavior offering energy dissipation through inelastic deformation
- Shear failure should be avoided due to small energy dissipation and rapid strength degradation (non-ductile)

Example Intake Tower

Input Acceleration Time Histories

 $(M_w 6.5 at 5 km)$

Maximum Response of Example Tower

TH#	Earthquake Record	Maximum Displ. (in)	Maximum Moment (k-ft)	Maximum Shear (Kips)			
X-Comp	X-Component of Earthqauke Ground Motion (X-Direction)						
1	1966 Parkfield	1.95	1,351,870	13,149			
2	1987 Whittier Narrows	2.14	1,453,510	15,296			
3	1989 Loma Prieta	4.80	3,376,720	33,308			
4	1971 San Fernando	4.28	2,779,910	28,977			
Y-Component of Earthqauke Ground Motion (Y-Direction)							
1	1966 Parkfield	3.05	1,518,030	24,293			
2	1987 Whittier Narrows	2.49	1,014,640	14,410			
3	1989 Loma Prieta	4.56	2,224,440	25,426			
4	1971 San Fernando	5.94	2,394,360	21,734			

Damage Criteria for Linear Analysis of Intake Towers

Damage Assessment with 5% damping

Damage Assessment with 10% Damping

Dynamic Soil-Pile-Structure Interaction Analysis of Olmsted Lock

- MDE spectra and ground motion time histories
- Idealization of site soil profiles and estimates of dynamic soil properties
- Development of finite element models of the soilpile-lock structure system
- Analysis of static loading
- Analysis of dynamic loading
- Results and performance evaluation

Design Earthquake Motion and Load Combination Cases

	Seismic Loads		Static Loads	
Case	Horizontal	Vertical	Bending	Axial
	Excitation	Excitation	Moment	Force
1	+	+	+	+
2	+	-	+	+
3	-	+	+	+
4	-	-	+	+

Earthquake Ground Motion Acceleration Time Histories

Stratigraphic Profile at Olmsted Site

Soil-Pile-Structure Interaction Analysis

Snap Shot of Maximum Deflection of Lock-Pile-Foundation

Evaluation of Lock Section Forces

Evaluation of Lock Section Forces

INTERACTION AT VERTICAL SECTION: 3; CENTER LOCATION: X=-8.72 Y=76.20

Evaluation of Pile Forces and Moments

Evaluation of Pile Forces and Moments

INTERACTION FACTORS FOR BEAM GROUP NUMBER: 43; CENTER LOCATION: X=47.63

Performance Criteria for Lock H-Piles

- "Expected Yield" Case: yielding should be limited to less than 10% of piles and cumulative yield duration should not exceed 0.1 sec
- DCR of concrete sections should not exceed 1.5 and those exceeding one be limited to less than 10% surface area of the lock.

Pushover Analysis of Intake Towers with RC Fiber Element

3D View of Example Tower

Stick Model

Tower Section Properties and Re-bar Arrangement

Pushing in Longitudinal Direction

Parameter		Value
Width	(b)	37.00 ft
Depth	(h)	48.00 ft
Cross Section Area	(A)	876.00 ft ²
Moment of Inertia	(I_{yy})	243,792 ft ⁴
Nominal Moment	(Mn _y)	718,814 k-ft
Cracking Moment	(M _{cr})	620,900 k-ft

Pushing in Transverse Direction

	Parameter		Value
Widt	:h	(b)	48.00 ft
Dept	h	(h)	37.00 ft
Cros	s Section Area	(A)	876.00 ft ²
Mom	ent of Inertia	$(_{xx})$	155,737 ft ⁴
Nom	inal Moment	(Mn_x)	518,879 k-ft
Crac	king Moment	(M _{cr})	507,900 k-ft

Nonlinear RC Fiber Element

• RC Fiber Element

Moment-curvature Relationships for Example Intake Tower (x-dir)

Pushover Curves for Example Intake Tower (x-dir)

Moment-curvature Relationships for Example Intake Tower (y-dir)

Pushover Curves for Example Intake Tower (y-dir)

Pushover Analysis of Navigation Locks

Nonlinear FE Model for Pushover Analysis of Navigation Locks

• Lumped Model

Pile foundation represented by lumped springs

Full Model

Pile foundation represented by nonlinear beamcolumn and soil springs (p-y curves)

Nonlinear Pile Foundation Models

Nonlinear Lumped Pile-Head
 Springs

$$\begin{cases} V_x \\ M_y \end{cases} = \left[\begin{array}{cc} K_{xx} & K_{x\theta} \\ K_{\theta x} & K_{\theta \theta} \end{array} \right] \times \left\{ \begin{matrix} u_x \\ \theta_y \end{matrix} \right\}$$

Nonlinear Pile-Soil Model

Nonlinear Pile-head Stiffness

Nonlinear Fiber Element

RC Fiber Element

Lock RC Section

Pushover Deflected Shapes for Pile-Founded Lock

Full Model

Moment-Curvature relationship for Lock Base Slab

Pushover Curve for Pile-Founded Lock

Nonlinear Analysis of Arch Dams with Joint Opening

Parameters of Greatest Significance

- Input Earthquake Acceleration Histories
- Joint Strength and Stiffness Properties
- Frictional Resistance of Joints
- Number of Joints
- Location of Joints

Results and Performance Evaluation

- Envelope of Arch & Cantilever
 Stress Contours
- Instantaneous Arch & Cantilever
 Stress Contours
- Extend/History of Contraction
 Joint Opening/Sliding
- Extent/History of Lift Joint Cracking/Opening/Sliding
- Understanding of Dam Behavior
 & Potential Failure Modes, if
 Severe Joint Opening/Cracking

Envelope of Maximum Stresses (monolithic dam)

Concurrent Maximum Stresses (joints permitted to open)

Time History of Maximum Joint Opening

Historic Performance of Dams

• <u>Shih-Kang Gravity Dam</u>:

Incident:

The Chi-Chi, Taiwan Earthquake of Sep. 21, 1999

Fault rupture was most dramatic at Shih-Kang Dam. It passed directly beneath the right end of the dam and caused severe damage. The offsets were roughly 10m vertical and 2 m horizontal. Prior to this earthquake, the Chelungpu fault was not mapped at this site.

- Bartlett Multiple Arch Dam:
 287' high (Phoenix, CA)
 - Deficiency: The upper portions of arches would be overstressed under an MCE event and might fail

- Clear Creek Dam: 83' high thin arch dam (Yakima, WA)
 - Deficiency: Unstable under MCE
 - Modification: Was converted from a thin arch to a gravity dam by constructing a mass concrete buttress on the

Bear Valley Multiple Arch
 Dam: 80' high, w/ 10 arches
 (Redlands, CA)

Deficiency:

Did not meet seismic safety requirements

Modification:

 Existing arch barrels were filled by mass concrete to strengthen the dam and thus improve its earthquake resistance

 Gibraltar Dam: 195'-high arch dam (Santa Barbara, CA)

Deficiency:

 Did not meet seismic safety requirements

Modification:

 Roller-compacted concrete buttress was constructed against downstream slope of the dam to improve its earthquake resistance

 Mathis Dam: 108'-high buttress dam (Tallulah Falls, GA)

Deficiency:

 Potential sliding failure under PMF

Modification:

 Concrete thrust blocks and tendon anchors were added to improve stability Shepaug Dam: 140'-high Concrete Gravity (Southbury & Newton, Connecticut)

Deficiency:

Unstable under new PMF

Modification:

 Approximately 100 posttensioned anchors installed in the dam to improve stability

 Stewart Mountain Dam: 212'high thin arch (Phoenix, AZ)

Deficiencies:

- Upper portion of the arch could fail due to lack of bond across lift lines
- Gravity sections and thrust blocks were determined to be unstable

Modification:

 Post-tensioned anchors were installed in the arch and thrust block

- Pacoima Dam: 372'-high arch dam (San Fernando, CA)
 - Incident (1971 & 1994 Eqs):
 - Permanent slight tilting of dam crest and chord shortening of dam
 - Partial opening of contraction joints within the dam and between the dam and thrust block
 - Crack in left thrust block
 - Rearrangement and movement of rock mass

Modifications:

 Abutment stabilization by posttensioned rock anchors; foundation curtain grouting, relief drains, thrust block crack repair and joint grouting